autots.models package¶
Submodules¶
autots.models.arch module¶
autots.models.base module¶
autots.models.basics module¶
autots.models.cassandra module¶
autots.models.composite module¶
autots.models.deepssm module¶
autots.models.dnn module¶
Neural Nets.
- class autots.models.dnn.ElasticNetwork(size: int = 256, l1: float = 0.01, l2: float = 0.02, feature_subsample_rate: float | None = None, optimizer: str = 'adam', loss: str = 'mse', epochs: int = 20, batch_size: int = 32, activation: str = 'relu', verbose: int = 1, random_seed: int = 2024)¶
Bases:
object- fit(X, y)¶
- predict(X)¶
- class autots.models.dnn.KerasRNN(rnn_type: str = 'LSTM', kernel_initializer: str = 'lecun_uniform', hidden_layer_sizes: tuple = (32, 32, 32), optimizer: str = 'adam', loss: str = 'huber', epochs: int = 50, batch_size: int = 32, shape=1, verbose: int = 1, random_seed: int = 2020)¶
Bases:
objectWrapper for Tensorflow Keras based RNN.
- Parameters:
rnn_type (str) – Keras cell type ‘GRU’ or default ‘LSTM’
kernel_initializer (str) – passed to first keras LSTM or GRU layer
hidden_layer_sizes (tuple) – of len 1 or 3 passed to first keras LSTM or GRU layers
optimizer (str) – Passed to keras model.compile
loss (str) – Passed to keras model.compile
epochs (int) – Passed to keras model.fit
batch_size (int) – Passed to keras model.fit
verbose (int) – 0, 1 or 2. Passed to keras model.fit
random_seed (int) – passed to tf.random.set_seed()
- fit(X, Y)¶
Train the model on dataframes of X and Y.
- predict(X)¶
Predict on dataframe of X.
- class autots.models.dnn.Transformer(head_size=256, num_heads=4, ff_dim=4, num_transformer_blocks=4, mlp_units=[128], mlp_dropout=0.4, dropout=0.25, optimizer: str = 'adam', loss: str = 'huber', epochs: int = 50, batch_size: int = 32, verbose: int = 1, random_seed: int = 2020)¶
Bases:
objectWrapper for Tensorflow Keras based Transformer.
based on: https://keras.io/examples/timeseries/timeseries_transformer_classification/
- Parameters:
optimizer (str) – Passed to keras model.compile
loss (str) – Passed to keras model.compile
epochs (int) – Passed to keras model.fit
batch_size (int) – Passed to keras model.fit
verbose (int) – 0, 1 or 2. Passed to keras model.fit
random_seed (int) – passed to tf.random.set_seed()
- fit(X, Y)¶
Train the model on dataframes of X and Y.
- predict(X)¶
Predict on dataframe of X.
- autots.models.dnn.transformer_build_model(input_shape, output_shape, head_size, num_heads, ff_dim, num_transformer_blocks, mlp_units, dropout=0, mlp_dropout=0)¶
- autots.models.dnn.transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0)¶
autots.models.ensemble module¶
autots.models.gluonts module¶
autots.models.matrix_var module¶
autots.models.mlensemble module¶
autots.models.model_list module¶
Lists of models grouped by aspects.
- autots.models.model_list.auto_model_list(n_jobs, n_series, frequency)¶
- autots.models.model_list.model_list_to_dict(model_list)¶
Convert various possibilities to dict.
autots.models.neural_forecast module¶
autots.models.prophet module¶
autots.models.pytorch module¶
autots.models.sklearn module¶
autots.models.statsmodels module¶
autots.models.tide module¶
Module contents¶
Model Models