autots.models package¶
Submodules¶
autots.models.arch module¶
Arch Models from arch package.
- class autots.models.arch.ARCH(name: str = 'ARCH', frequency: str = 'infer', prediction_interval: float = 0.9, mean: str = 'Constant', lags: int = 2, vol: str = 'GARCH', p: int = 1, o: int = 0, q: int = 1, power: float = 2.0, dist: str = 'normal', rescale: bool = False, maxiter: int = 200, simulations: int = 1000, regression_type: str | None = None, return_result_windows: bool = False, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
ARCH model family from arch package. See arch package for arg details. Not to be confused with a linux distro.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
autots.models.base module¶
Base model information
@author: Colin
- class autots.models.base.ModelObject(name: str = 'Uninitiated Model Name', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, fit_runtime=datetime.timedelta(0), holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int = -1)¶
Bases:
object
Generic class for holding forecasting models.
- Models should all have methods:
.fit(df, future_regressor = []) (taking a DataFrame with DatetimeIndex and n columns of n timeseries) .predict(forecast_length = int, future_regressor = [], just_point_forecast = False) .get_new_params() - return a dictionary of weighted random selected parameters
- Parameters:
name (str) – Model Name
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
n_jobs (int) – used by some models that parallelize to multiple cores
- basic_profile(df)¶
Capture basic training details.
- create_forecast_index(forecast_length: int, last_date=None)¶
Generate a pd.DatetimeIndex appropriate for a new forecast.
Warning
Requires ModelObject.basic_profile() being called as part of .fit()
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- static time()¶
- class autots.models.base.PredictionObject(model_name: str = 'Uninitiated', forecast_length: int = 0, forecast_index=nan, forecast_columns=nan, lower_forecast=nan, forecast=nan, upper_forecast=nan, prediction_interval: float = 0.9, predict_runtime=datetime.timedelta(0), fit_runtime=datetime.timedelta(0), model_parameters={}, transformation_parameters={}, transformation_runtime=datetime.timedelta(0), per_series_metrics=nan, per_timestamp=nan, avg_metrics=nan, avg_metrics_weighted=nan, full_mae_error=None, model=None, transformer=None)¶
Bases:
object
Generic class for holding forecast information.
- model_name¶
- model_parameters¶
- transformation_parameters¶
- forecast¶
- upper_forecast¶
- lower_forecast¶
- long_form_results()¶
return complete results in long form
- total_runtime()¶
return runtime for all model components in seconds
- plot()¶
- evaluate()¶
- apply_constraints()¶
- apply_constraints(constraints=None, df_train=None, constraint_method=None, constraint_regularization=None, upper_constraint=None, lower_constraint=None, bounds=True)¶
Use constraint thresholds to adjust outputs by limit.
Example
- apply_constraints(
- constraints=[
- { # don’t exceed historic max
“constraint_method”: “quantile”, “constraint_value”: 1.0, “constraint_direction”: “upper”, “constraint_regularization”: 1.0, “bounds”: True,
}, { # don’t exceed 2% decline by end of forecast horizon
“constraint_method”: “slope”, “constraint_value”: {
“slope”: -0.02, “window”: 28, “window_agg”: “min”, “threshold”: -0.01,
}, “constraint_direction”: “lower”, “constraint_regularization”: 0.9, “bounds”: False,
}, { # don’t exceed 2% growth by end of forecast horizon
“constraint_method”: “slope”, “constraint_value”: {“slope”: 0.02, “window”: 10, “window_agg”: “max”, “threshold”: 0.01}, “constraint_direction”: “upper”, “constraint_regularization”: 0.9, “bounds”: False,
}, { # don’t go below the last 10 values - 10%
“constraint_method”: “last_window”, “constraint_value”: {“window”: 10, “threshold”: -0.1}, “constraint_direction”: “lower”, “constraint_regularization”: 1.0, “bounds”: False,
}, { # don’t go below zero
“constraint_method”: “absolute”, “constraint_value”: 0, # can also be an array or Series “constraint_direction”: “lower”, “constraint_regularization”: 1.0, “bounds”: True,
}, { # don’t go below historic min - 1 st dev
“constraint_method”: “stdev_min”, “constraint_value”: 1.0, “constraint_direction”: “lower”, “constraint_regularization”: 1.0, “bounds”: True,
}, { # don’t go above historic mean + 3 st devs, soft limit
“constraint_method”: “stdev”, “constraint_value”: 3.0, “constraint_direction”: “upper”, “constraint_regularization”: 0.5, “bounds”: True,
}, { # round decimals to 2 places
“constraint_method”: “round”, “constraint_value”: 2,
}, { # apply dampening (gradually flatten out forecast)
“constraint_method”: “dampening”, “constraint_value”: 0.98,
},
]
)
- Parameters:
constraint_method (str) – one of stdev_min - threshold is min and max of historic data +/- constraint * st dev of data stdev - threshold is the mean of historic data +/- constraint * st dev of data absolute - input is array of length series containing the threshold’s final value for each quantile - constraint is the quantile of historic data to use as threshold
constraint_regularization (float) – 0 to 1 where 0 means no constraint, 1 is hard threshold cutoff, and in between is penalty term
upper_constraint (float) – or array, depending on method, None if unused
lower_constraint (float) – or array, depending on method, None if unused
bounds (bool) – if True, apply to upper/lower forecast, otherwise False applies only to forecast
df_train (pd.DataFrame) – required for quantile/stdev methods to find threshold values
- Returns:
self
- evaluate(actual, series_weights: dict | None = None, df_train=None, per_timestamp_errors: bool = False, full_mae_error: bool = True, scaler=None, cumsum_A=None, diff_A=None, last_of_array=None, column_names=None, custom_metric=None)¶
Evalute prediction against test actual. Fills out attributes of base object.
This fails with pd.NA values supplied.
- Parameters:
actual (pd.DataFrame) – dataframe of actual values of (forecast length * n series)
series_weights (dict) – key = column/series_id, value = weight
df_train (pd.DataFrame) – historical values of series, wide, used for setting scaler for SPL necessary for MADE and Contour if forecast_length == 1 if None, actuals are used instead (suboptimal).
per_timestamp (bool) – whether to calculate and return per timestamp direction errors
metric (custom) – a function to generate a custom metric. Expects func(A, F, df_train, prediction_interval) where the first three are np arrays of wide style 2d.
- Returns:
contains a column for each series containing accuracy metrics per_timestamp (pandas.DataFrame): smape accuracy for each timestamp, avg of all series avg_metrics (pandas.Series): average values of accuracy across all input series avg_metrics_weighted (pandas.Series): average values of accuracy across all input series weighted by series_weight, if given full_mae_errors (numpy.array): abs(actual - forecast) scaler (numpy.array): precomputed scaler for efficiency, avg value of series in order of columns
- Return type:
per_series_metrics (pandas.DataFrame)
- extract_ensemble_runtimes()¶
Return a dataframe of final runtimes per model for standard ensembles.
- long_form_results(id_name='SeriesID', value_name='Value', interval_name='PredictionInterval', update_datetime_name=None, datetime_column=None)¶
Export forecasts (including upper and lower) as single ‘long’ format output
- Parameters:
id_name (str) – name of column containing ids
value_name (str) – name of column containing numeric values
interval_name (str) – name of column telling you what is upper/lower
datetime_column (str) – if None, is index, otherwise, name of column for datetime
update_datetime_name (str) – if not None, adds column with current timestamp and this name
- Returns:
pd.DataFrame
- plot(df_wide=None, series: str | None = None, remove_zeroes: bool = False, interpolate: str | None = None, start_date: str = 'auto', alpha=0.3, facecolor='black', loc='upper right', title=None, title_substring=None, vline=None, colors=None, include_bounds=True, **kwargs)¶
Generate an example plot of one series. Does not handle non-numeric forecasts.
- Parameters:
df_wide (str) – historic data for plotting actuals
series (str) – column name of series to plot. Random if None.
ax – matplotlib axes to pass through to pd.plot()
remove_zeroes (bool) – if True, don’t plot any zeroes
interpolate (str) – if not None, a method to pass to pandas interpolate
start_date (str) – Y-m-d string or Timestamp to remove all data before
vline (datetime) – datetime of dashed vertical line to plot
colors (dict) – colors mapping dictionary col: color
alpha (float) – intensity of bound interval shading
title (str) – title
title_substring (str) – additional title details to pass to existing, moves series name to axis
include_bounds (bool) – if True, shows region of upper and lower forecasts
pd.DataFrame.plot() (**kwargs passed to) –
- plot_df(df_wide=None, series: str | None = None, remove_zeroes: bool = False, interpolate: str | None = None, start_date: str | None = None)¶
- plot_ensemble_runtimes(xlim_right=None)¶
Plot ensemble runtimes by model type.
- plot_grid(df_wide=None, start_date='auto', interpolate=None, remove_zeroes=False, figsize=(24, 18), title='AutoTS Forecasts', cols=None, series=None, colors=None, include_bounds=True)¶
Plots multiple series in a grid, if present. Mostly identical args to the single plot function.
- total_runtime()¶
Combine runtimes.
- autots.models.base.apply_constraints(forecast, lower_forecast, upper_forecast, constraints=None, df_train=None, constraint_method=None, constraint_regularization=None, upper_constraint=None, lower_constraint=None, bounds=True)¶
Use constraint thresholds to adjust outputs by limit.
- Parameters:
forecast (pd.DataFrame) – forecast df, wide style
lower_forecast (pd.DataFrame) – lower bound forecast df if bounds is False, upper and lower forecast dataframes are unused and can be empty
upper_forecast (pd.DataFrame) – upper bound forecast df
constraints (list) – list of dictionaries of constraints to apply keys: “constraint_method” (same as below, old args), “constraint_regularization”, “constraint_value”, “constraint_direction” (upper/lower), bounds
df_train (pd.DataFrame) – required for quantile/stdev methods to find threshold values
args (# old) –
constraint_method (str) – one of stdev_min - threshold is min and max of historic data +/- constraint * st dev of data stdev - threshold is the mean of historic data +/- constraint * st dev of data absolute - input is array of length series containing the threshold’s final value for each quantile - constraint is the quantile of historic data to use as threshold last_window - certain percentage above and below the last n data values slope - cannot exceed a certain growth rate from last historical value
constraint_regularization (float) – 0 to 1 where 0 means no constraint, 1 is hard threshold cutoff, and in between is penalty term
upper_constraint (float) – or array, depending on method, None if unused
lower_constraint (float) – or array, depending on method, None if unused
bounds (bool) – if True, apply to upper/lower forecast, otherwise False applies only to forecast
- Returns:
forecast, lower, upper (pd.DataFrame)
- autots.models.base.calculate_peak_density(model, data, group_col='Model', y_col='TotalRuntimeSeconds')¶
- autots.models.base.create_forecast_index(frequency, forecast_length, train_last_date, last_date=None)¶
- autots.models.base.create_seaborn_palette_from_cmap(cmap_name='gist_rainbow', n=10)¶
- autots.models.base.extract_single_series_from_horz(series, model_name, model_parameters)¶
- autots.models.base.extract_single_transformer(series, model_name, model_parameters, transformation_params)¶
- autots.models.base.plot_distributions(runtimes_data, group_col='Model', y_col='TotalRuntimeSeconds', xlim=None, xlim_right=None, title_suffix='')¶
autots.models.basics module¶
Naives and Others Requiring No Additional Packages Beyond Numpy and Pandas
- class autots.models.basics.AverageValueNaive(name: str = 'AverageValueNaive', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, method: str = 'median', window: int | None = None, **kwargs)¶
Bases:
ModelObject
Naive forecasting predicting a dataframe of the series’ median values
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.BallTreeMultivariateMotif(frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int = 1, window: int = 5, point_method: str = 'mean', distance_metric: str = 'canberra', k: int = 10, sample_fraction=None, comparison_transformation: dict | None = None, combination_transformation: dict | None = None, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series. Many of these motifs will struggle when the forecast_length is large and history is short.
- Parameters:
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
n_jobs (int) – how many parallel processes to run
random_seed (int) – used in selecting windows if max_windows is less than total available
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – all valid values for scipy cdist
k (int) – number of closest neighbors to consider
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.BallTreeRegressionMotif(frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int = 1, window: int = 5, point_method: str = 'mean', distance_metric: str = 'canberra', k: int = 10, sample_fraction=None, comparison_transformation: dict | None = None, combination_transformation: dict | None = None, extend_df: bool = True, holiday: bool = False, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int = 7, min_rolling_periods: int = 7, ewm_var_alpha: float | None = None, quantile90_rolling_periods: int | None = None, quantile10_rolling_periods: int | None = None, ewm_alpha: float = 0.5, additional_lag_periods: int | None = None, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, nonzero_last_n: int | None = None, datepart_method: str | None = None, polynomial_degree: int | None = None, probabilistic: bool = False, scale_full_X: bool = False, cointegration: str | None = None, cointegration_lag: int | None = None, series_hash: bool = False, frac_slice: float | None = None, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series. This version uses a feature ala MultivariateRegression but with motifs instead of a regression ML model. Many of these motifs will struggle when the forecast_length is large and history is short.
- Parameters:
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
n_jobs (int) – how many parallel processes to run
random_seed (int) – used in selecting windows if max_windows is less than total available
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – all valid values for scipy cdist
k (int) – number of closest neighbors to consider
- fit(df, future_regressor=None, static_regressor=None, regressor_per_series=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False, static_regressor=None, regressor_per_series=None)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.BasicLinearModel(name: str = 'BasicLinearModel', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2024, verbose: int = 0, regression_type: str | None = None, datepart_method: str = 'common_fourier', changepoint_spacing: int | None = None, changepoint_distance_end: int | None = None, lambda_: float = 0.01, trend_phi: float | None = None, holiday_countries_used: bool = True, **kwargs)¶
Bases:
ModelObject
Ridge regression of seasonal + trend changepoint + constant + regressor. Like a minimal version of Prophet or Cassandra.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – “User” or None. If used, will be as covariate. The ratio of num_series:num_regressor_series will largely determine the impact
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – all valid values for scipy cdist + “nan_euclidean” from sklearn
include_differenced (bool) – True to have the distance metric result be an average of the distance on absolute values as well as differenced values
k (int) – number of closest neighbors to consider
stride_size (int) – how many obs to skip between each new window. Higher numbers will reduce the number of matching windows and make the model faster.
- base_scaler(df)¶
- coefficient_summary(df)¶
Used in profiler.
- create_x(df, future_regressor=None, holiday_country='US', holiday_countries_used=True)¶
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- process_components()¶
- return_components(df)¶
- scale_data(df)¶
- to_origin_space(df, trans_method='forecast', components=False, bounds=False)¶
Take transformed outputs back to original feature space.
- class autots.models.basics.ConstantNaive(name: str = 'ConstantNaive', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, constant: float = 0, **kwargs)¶
Bases:
ModelObject
Naive forecasting predicting a dataframe of zeroes (0’s)
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
constant (float) – value to fill with
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.FFT(name: str = 'FFT', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2023, verbose: int = 0, n_harmonics: int = 10, detrend: str = 'linear', **kwargs)¶
Bases:
ModelObject
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
regressor (numpy.Array) – additional regressor
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.KalmanStateSpace(name: str = 'KalmanStateSpace', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, state_transition=[[1, 1], [0, 1]], process_noise=[[0.1, 0.0], [0.0, 0.01]], observation_model=[[1, 0]], observation_noise: float = 1.0, em_iter: int = 10, model_name: str = 'undefined', forecast_length: int | None = None, subset=None, **kwargs)¶
Bases:
ModelObject
Forecast using a state space model solved by a Kalman Filter.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
subset (int) – if not None, forecasts in chunks of this size. Reduces memory at the expense of compute time.
- cost_function(param, df)¶
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- tune_observational_noise(df)¶
- class autots.models.basics.LastValueNaive(name: str = 'LastValueNaive', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, **kwargs)¶
Bases:
ModelObject
Naive forecasting predicting a dataframe of the last series value
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.MetricMotif(name: str = 'MetricMotif', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, regression_type: str | None = None, comparison_transformation: dict | None = None, combination_transformation: dict | None = None, window: int = 5, point_method: str = 'mean', distance_metric: str = 'mae', k: int = 10, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series. This version is fully vectorized, using basic metrics for distance comparison.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – mae, mqae, mse
k (int) – number of closest neighbors to consider
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
regressor (numpy.Array) – additional regressor
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.Motif(name: str = 'Motif', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int = 1, window: int = 5, point_method: str = 'weighted_mean', distance_metric: str = 'minkowski', k: int = 10, max_windows: int = 5000, multivariate: bool = False, return_result_windows: bool = False, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
n_jobs (int) – how many parallel processes to run
random_seed (int) – used in selecting windows if max_windows is less than total available
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – all valid values for scipy cdist
k (int) – number of closest neighbors to consider
max_windows (int) – max number of windows to consider (a speed/accuracy tradeoff)
multivariate (bool) – if True, utilizes matches from all provided series for each series forecast. Else just own history of series.
return_result_windows (bool) – if True, result windows (all motifs gathered for forecast) will be saved in dict to result_windows attribute
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.MotifSimulation(name: str = 'MotifSimulation', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, phrase_len: str = '5', comparison: str = 'magnitude_pct_change_sign', shared: bool = False, distance_metric: str = 'l2', max_motifs: float = 50, recency_weighting: float = 0.1, cutoff_threshold: float = 0.9, cutoff_minimum: int = 20, point_method: str = 'median', n_jobs: int = -1, verbose: int = 1, **kwargs)¶
Bases:
ModelObject
More dark magic created by the evil mastermind of this project. Basically a highly-customized KNN
Warning: if you are forecasting many steps (large forecast_length), and interested in probabilistic upper/lower forecasts, then set recency_weighting <= 0, and have a larger cutoff_minimum
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
phrase_len (int) – length of motif vectors to compare as samples
comparison (str) – method to process data before comparison, ‘magnitude’ is original data
shared (bool) – whether to compare motifs across all series together, or separately
distance_metric (str) – passed through to sklearn pairwise_distances
max_motifs (float) – number of motifs to compare per series. If less 1, used as % of length training data
recency_weighting (float) – amount to the value of more recent data.
cutoff_threshold (float) – lowest value of distance metric to allow into forecast
cutoff_minimum (int) – minimum number of motif vectors to include in forecast.
point_method (str) – summarization method to choose forecast on, ‘sample’, ‘mean’, ‘sign_biased_mean’, ‘median’
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.NVAR(name: str = 'NVAR', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, k: int = 1, ridge_param: float = 2.5e-06, warmup_pts: int = 1, seed_pts: int = 1, seed_weighted: str | None = None, batch_size: int = 5, batch_method: str = 'input_order', **kwargs)¶
Bases:
ModelObject
Nonlinear Variable Autoregression or ‘Next-Generation Reservoir Computing’
based on https://github.com/quantinfo/ng-rc-paper-code/ Gauthier, D.J., Bollt, E., Griffith, A. et al. Next generation reservoir computing. Nat Commun 12, 5564 (2021). https://doi.org/10.1038/s41467-021-25801-2 with adjustments to make it probabilistic and to scale better
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
k (int) – the AR order (keep this small, larger is slow and usually pointless)
ridge_param (float) – standard lambda for ridge regression
warmup_pts (int) – in reality, passing 1 here (no warmup) is fine
batch_size (int) – nvar scales exponentially, to scale linearly, series are split into batches of size n
batch_method (str) – method for collecting series to make batches
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.SeasonalNaive(name: str = 'SeasonalNaive', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, lag_1: int = 7, lag_2: int | None = None, method: str = 'lastvalue', **kwargs)¶
Bases:
ModelObject
Naive forecasting predicting a dataframe with seasonal (lag) forecasts.
Concerto No. 2 in G minor, Op. 8, RV 315
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
method (str) – Either ‘LastValue’ (use last value of lag n) or ‘Mean’ (avg of all lag n)
lag_1 (int) – The lag of the seasonality, should int > 1.
lag_2 (int) – Optional second lag of seasonality which is averaged with first lag to produce forecast.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast: bool = False)¶
Generate forecast data immediately following dates of .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.SeasonalityMotif(name: str = 'SeasonalityMotif', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, regression_type: str | None = None, window: int = 5, point_method: str = 'mean', distance_metric: str = 'mae', k: int = 10, datepart_method: str = 'common_fourier', independent: bool = False, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series. This version is fully vectorized, using basic metrics for distance comparison.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – mae, mqae, mse
k (int) – number of closest neighbors to consider
independent (bool) – if True, each time step is separate. This is the one motif that can then handle large forecast_length to short historical data.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
regressor (numpy.Array) – additional regressor
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.SectionalMotif(name: str = 'SectionalMotif', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, regression_type: str | None = None, window: int = 5, point_method: str = 'weighted_mean', distance_metric: str = 'nan_euclidean', include_differenced: bool = False, k: int = 10, stride_size: int = 1, fillna: str = 'SimpleSeasonalityMotifImputer', comparison_transformation: dict | None = None, combination_transformation: dict | None = None, **kwargs)¶
Bases:
ModelObject
Forecasts using a nearest neighbors type model adapted for probabilistic time series. This version takes the distance metric average for all series at once.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – “User” or None. If used, will be as covariate. The ratio of num_series:num_regressor_series will largely determine the impact
window (int) – length of forecast history to match on
point_method (int) – how to summarize the nearest neighbors to generate the point forecast “weighted_mean”, “mean”, “median”, “midhinge”
distance_metric (str) – all valid values for scipy cdist + “nan_euclidean” from sklearn
include_differenced (bool) – True to have the distance metric result be an average of the distance on absolute values as well as differenced values
k (int) – number of closest neighbors to consider
stride_size (int) – how many obs to skip between each new window. Higher numbers will reduce the number of matching windows and make the model faster.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
regressor (numpy.Array) – additional regressor
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.basics.TVVAR(name: str = 'TVVAR', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, regression_type: str | None = None, datepart_method: str = 'common_fourier', changepoint_spacing: int | None = None, changepoint_distance_end: int | None = None, lambda_: float = 0.01, phi: float | None = None, max_cycles: int = 2000, trend_phi: float | None = None, var_dampening: float | None = None, lags: list | None = None, rolling_means: list | None = None, apply_pca: bool = False, pca_n_components: float = 0.95, threshold_method: str = 'std', threshold_value: float | None = None, base_scaled: bool = True, x_scaled: bool = False, var_preprocessing: dict = False, var_postprocessing: dict = False, mode: str = 'additive', holiday_countries_used: bool = True, **kwargs)¶
Bases:
BasicLinearModel
Time Varying VAR
Notes
var_preprocessing will fail with many options, anything that scales/shifts the space x_scaled=True seems to fail often when base_scaled=False and VAR components used
- apply_beta_threshold(beta=None)¶
- create_VAR_features(df)¶
- empty_scaler(df)¶
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- process_components()¶
Return components. Does not account for dampening.
- autots.models.basics.ZeroesNaive¶
alias of
ConstantNaive
- autots.models.basics.looped_motif(Xa, Xb, name, r_arr=None, window=10, distance_metric='minkowski', k=10, point_method='mean', prediction_interval=0.9, return_result_windows=False)¶
inner function for Motif model.
- autots.models.basics.predict_reservoir(df, forecast_length, prediction_interval=None, warmup_pts=1, k=2, ridge_param=2.5e-06, seed_pts: int = 1, seed_weighted: str | None = None)¶
Nonlinear Variable Autoregression or ‘Next-Generation Reservoir Computing’
based on https://github.com/quantinfo/ng-rc-paper-code/ Gauthier, D.J., Bollt, E., Griffith, A. et al. Next generation reservoir computing. Nat Commun 12, 5564 (2021). https://doi.org/10.1038/s41467-021-25801-2 with adjustments to make it probabilistic
This is very slow and memory hungry when n series/dimensions gets big (ie > 50). Already effectively parallelized by linpack it seems. It’s very sensitive to error in most recent data point! The seed_pts and seed_weighted can help address that.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
k (int) – the AR order (keep this small, larger is slow and usually pointless)
ridge_param (float) – standard lambda for ridge regression
warmup_pts (int) – in reality, passing 1 here (no warmup) is fine
seed_pts (int) – number of back steps to use to simulate future if > 10, also increases search space of probabilistic forecast
seed_weighted (str) – how to summarize most recent points if seed_pts > 1
autots.models.cassandra module¶
Cassandra Model. Created on Tue Sep 13 19:45:57 2022
@author: Colin with assistance from @crgillespie22
- class autots.models.cassandra.BayesianMultiOutputRegression(gaussian_prior_mean=0, alpha=1.0, wishart_prior_scale=1.0, wishart_dof_excess=0)¶
Bases:
object
Bayesian Linear Regression, conjugate prior update.
- Parameters:
gaussian_prior_mean (float) – mean of prior, a small positive value can encourage positive coefs which make better component plots
alpha (float) – prior scale of gaussian covariance, effectively a regularization term
wishart_dof_excess (int) – Larger values make the prior more peaked around the scale matrix.
wishart_prior_scale (float) – A larger value means a smaller prior variance on the noise covariance, while a smaller value means more prior uncertainty about it.
- fit(X, Y)¶
- predict(X, return_std=False)¶
- sample_posterior(n_samples=1)¶
- class autots.models.cassandra.Cassandra(preprocessing_transformation: dict | None = None, scaling: str = 'BaseScaler', past_impacts_intervention: str | None = None, seasonalities: dict = ['common_fourier'], ar_lags: list | None = None, ar_interaction_seasonality: dict | None = None, anomaly_detector_params: dict | None = None, anomaly_intervention: str | None = None, holiday_detector_params: dict | None = None, holiday_countries: dict | None = None, holiday_countries_used: bool = True, multivariate_feature: str | None = None, multivariate_transformation: str | None = None, regressor_transformation: dict | None = None, regressors_used: bool = True, linear_model: dict | None = None, randomwalk_n: int | None = None, trend_window: int = 30, trend_standin: str | None = None, trend_anomaly_detector_params: dict | None = None, trend_transformation: dict = {}, trend_model: dict = {'Model': 'LastValueNaive', 'ModelParameters': {}}, trend_phi: float | None = None, constraint: dict | None = None, x_scaler: bool = False, max_colinearity: float = 0.998, max_multicolinearity: float = 0.001, frequency: str = 'infer', prediction_interval: float = 0.9, random_seed: int = 2022, verbose: int = 0, n_jobs: int = 'auto', forecast_length: int = 30, **kwargs)¶
Bases:
ModelObject
Explainable decomposition-based forecasting with advanced trend modeling and preprocessing.
Tunc etiam fatis aperit Cassandra futuris ora, dei iussu non umquam credita Teucris. Nos delubra deum miseri, quibus ultimus esset ille dies, festa velamus fronde per urbem. -Aeneid 2.246-2.249
- In general, all time series data inputs (df, regressors, impacts) should be wide style data in a pd.DataFrame
an index that is a pd.DatetimeIndex one column per time series, with a uniquely identifiable column name
Impacts get confusing. A past impact of 0.05 would mean an outside, unforecastable force caused/added 5% of the value at this time. Accordingly, that 5% will be removed before forecasting, then added back on after. Impacts can also be negative values. A future impact of 5% would mean an outside force adds 5% above the original forecast. Future impacts can be used to model product goals or temporary anomalies which can’t or should’t be modeled by forecasting and whose relative effect is known Compare this with regressors, which are essentially the model estimating the relative impact given the raw size or presence of an outside effect
Warn about remove_excess_anomalies from holiday detector if relying on anomaly prediction Linear components are always model elements, but trend is actuals (history) and model (future) Running predict updates some internal attributes used in plotting and other figures, generally expect to use functions to latest predict Seasonalities are hard-coded to be as days so 7 will always = weekly even if data isn’t daily For slope analysis and zero crossings, a slope of 0 evaluates as a positive sign (=>0). Exactly 0 slope is rare real world data Does not currently follow the regression_type=’User’ and fails if no regressor pattern of other models For component decomposition, scale will be inaccurate unless ‘BaseScaler’ is used, but regardless this won’t affect final forecast
- Parameters:
pass –
- fit()¶
- predict()¶
- holiday_detector.dates_to_holidays()¶
- create_forecast_index()¶
after .fit, can be used to create index of prediction
- plot_forecast()¶
- plot_components()¶
- plot_trend()¶
- get_new_params()¶
- return_components()¶
- .anomaly_detector.anomalies¶
- .anomaly_detector.scores¶
- .holiday_count¶
- .holidays¶
- Type:
series flags, holiday detector only
- .params¶
- .keep_cols, .keep_cols_idx
- .x_array¶
- .predict_x_array¶
- .trend_train¶
- .predicted_trend¶
- analyze_trend(slope, index)¶
- auto_fit(df, validation_method)¶
- base_scaler(df)¶
- compare_actual_components()¶
- create_t(DTindex)¶
- cross_validate(df, validation_method)¶
- feature_importance()¶
- fit(df, future_regressor=None, regressor_per_series=None, flag_regressors=None, categorical_groups=None, past_impacts=None)¶
- fit_data(df, forecast_length=None, future_regressor=None, regressor_per_series=None, flag_regressors=None, future_impacts=None, regressor_forecast_model=None, regressor_forecast_model_params=None, regressor_forecast_transformations=None, include_history=False, past_impacts=None)¶
- get_new_params(method='fast')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- next_fit()¶
- plot_components(prediction=None, series=None, figsize=(16, 9), to_origin_space=True, title=None, start_date=None)¶
Plot breakdown of linear model components.
- Parameters:
prediction – the forecast object
series (str) – name of series to plot, if desired
figsize (tuple) – figure size
to_origin_space (bool) – setting to False can make the graph look right due to preprocessing transformers, but to the wrong scale especially useful if “AlignLastValue” and other transformers present
title (str) – title
start_date (str) – slice point for start date, can make some high frequency components easier to see with a shorter window
- plot_forecast(prediction, actuals=None, series=None, start_date=None, anomaly_color='darkslateblue', holiday_color='darkgreen', trend_anomaly_color='slategray', point_size=12.0)¶
Plot a forecast time series.
- Parameters:
prediction (model prediction object, required) –
actuals (pd.DataFrame) – wide style df, of know data if available
series (str) – name of time series column to plot
start_date (str or Timestamp) – point at which to begin X axis
anomaly_color (str) – name of anomaly point color
holiday_color (str) – name of holiday point color
trend_anomaly_color (str) – name of trend anomaly point color
point_size (str) – point size for all anomalies
- plot_things()¶
- plot_trend(series=None, vline=None, colors=['#d4f74f', '#82ab5a', '#ff6c05', '#c12600'], title=None, start_date=None, **kwargs)¶
- predict(forecast_length=None, include_history=False, future_regressor=None, regressor_per_series=None, flag_regressors=None, future_impacts=None, new_df=None, regressor_forecast_model=None, regressor_forecast_model_params=None, regressor_forecast_transformations=None, include_organic=False, df=None, past_impacts=None)¶
Generate a forecast.
future_regressor and regressor_per_series should only include new future values, history is already stored they should match on forecast_length and index of forecasts
- Parameters:
forecast_length (int) – steps ahead to predict, or None
include_history (bool) – include past predictions if True
.fit (all the same regressor args as) –
here (but future forecast versions) –
future_impacts (pd.DataFrame) – like past impacts but for the forecast ahead
new_df (pd.DataFrame) – or df, equivalent to fit_data update
- predict_new_product()¶
- process_components(to_origin_space=True)¶
Scale and standardize component outputs.
- return_components(to_origin_space=True, include_impacts=False)¶
Return additive elements of forecast, linear and trend. If impacts included, it is a multiplicative term.
- Parameters:
to_origin_space (bool) –
include_impacts (bool) –
- rolling_trend(trend_residuals, t)¶
- scale_data(df)¶
- to_origin_space(df, trans_method='forecast', components=False, bounds=False)¶
Take transformed outputs back to original feature space.
- treatment_causal_impact(df, intervention_dates)¶
- trend_analysis()¶
- autots.models.cassandra.clean_regressor(in_d, prefix='regr_')¶
- autots.models.cassandra.cost_function_dwae(params, X, y)¶
- autots.models.cassandra.cost_function_l1(params, X, y)¶
- autots.models.cassandra.cost_function_l1_positive(params, X, y)¶
- autots.models.cassandra.cost_function_l2(params, X, y)¶
- autots.models.cassandra.cost_function_quantile(params, X, y, q=0.9)¶
- autots.models.cassandra.create_t(ds)¶
- autots.models.cassandra.fit_linear_model(x, y, params=None)¶
- autots.models.cassandra.lstsq_minimize(X, y, maxiter=15000, cost_function='l1', method=None)¶
Any cost function version of lin reg.
- autots.models.cassandra.lstsq_solve(X, y, lamb=1, identity_matrix=None)¶
autots.models.dnn module¶
Neural Nets.
- class autots.models.dnn.ElasticNetwork(size: int = 256, l1: float = 0.01, l2: float = 0.02, feature_subsample_rate: float | None = None, optimizer: str = 'adam', loss: str = 'mse', epochs: int = 20, batch_size: int = 32, activation: str = 'relu', verbose: int = 1, random_seed: int = 2024)¶
Bases:
object
- fit(X, y)¶
- predict(X)¶
- class autots.models.dnn.KerasRNN(rnn_type: str = 'LSTM', kernel_initializer: str = 'lecun_uniform', hidden_layer_sizes: tuple = (32, 32, 32), optimizer: str = 'adam', loss: str = 'huber', epochs: int = 50, batch_size: int = 32, shape=1, verbose: int = 1, random_seed: int = 2020)¶
Bases:
object
Wrapper for Tensorflow Keras based RNN.
- Parameters:
rnn_type (str) – Keras cell type ‘GRU’ or default ‘LSTM’
kernel_initializer (str) – passed to first keras LSTM or GRU layer
hidden_layer_sizes (tuple) – of len 1 or 3 passed to first keras LSTM or GRU layers
optimizer (str) – Passed to keras model.compile
loss (str) – Passed to keras model.compile
epochs (int) – Passed to keras model.fit
batch_size (int) – Passed to keras model.fit
verbose (int) – 0, 1 or 2. Passed to keras model.fit
random_seed (int) – passed to tf.random.set_seed()
- fit(X, Y)¶
Train the model on dataframes of X and Y.
- predict(X)¶
Predict on dataframe of X.
- class autots.models.dnn.Transformer(head_size=256, num_heads=4, ff_dim=4, num_transformer_blocks=4, mlp_units=[128], mlp_dropout=0.4, dropout=0.25, optimizer: str = 'adam', loss: str = 'huber', epochs: int = 50, batch_size: int = 32, verbose: int = 1, random_seed: int = 2020)¶
Bases:
object
Wrapper for Tensorflow Keras based Transformer.
based on: https://keras.io/examples/timeseries/timeseries_transformer_classification/
- Parameters:
optimizer (str) – Passed to keras model.compile
loss (str) – Passed to keras model.compile
epochs (int) – Passed to keras model.fit
batch_size (int) – Passed to keras model.fit
verbose (int) – 0, 1 or 2. Passed to keras model.fit
random_seed (int) – passed to tf.random.set_seed()
- fit(X, Y)¶
Train the model on dataframes of X and Y.
- predict(X)¶
Predict on dataframe of X.
- autots.models.dnn.transformer_build_model(input_shape, output_shape, head_size, num_heads, ff_dim, num_transformer_blocks, mlp_units, dropout=0, mlp_dropout=0)¶
- autots.models.dnn.transformer_encoder(inputs, head_size, num_heads, ff_dim, dropout=0)¶
autots.models.ensemble module¶
Tools for generating and forecasting with ensembles of models.
- autots.models.ensemble.BestNEnsemble(ensemble_params, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime: dict, prediction_interval: float = 0.9)¶
Generate mean forecast for ensemble of models.
model_weights and point_methods other than ‘mean’ are incompatible
- Parameters:
ensemble_params (dict) – BestN ensemble param dict should have “model_weights”: {model_id: weight} where 1 is default weight per model
forecasts (dict) – {forecast_id: forecast dataframe} for all models same for lower_forecasts, upper_forecasts
forecast_runtime (dict) – dictionary of {forecast_id: timedelta of runtime}
prediction_interval (float) – metadata on interval
- autots.models.ensemble.DistEnsemble(ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval)¶
Generate forecast for distance ensemble.
- autots.models.ensemble.EnsembleForecast(ensemble_str, ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, df_train=None, prematched_series: dict | None = None)¶
Return PredictionObject for given ensemble method.
- autots.models.ensemble.EnsembleTemplateGenerator(initial_results, forecast_length: int = 14, ensemble: str = 'simple', score_per_series=None, use_validation=False)¶
Generate class 1 (non-horizontal) ensemble templates given a table of results.
- autots.models.ensemble.HDistEnsemble(ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval)¶
Generate forecast for per_series per distance ensembling.
- autots.models.ensemble.HorizontalEnsemble(ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, df_train=None, prematched_series: dict | None = None)¶
Generate forecast for per_series ensembling.
- autots.models.ensemble.HorizontalTemplateGenerator(per_series, model_results, forecast_length: int = 14, ensemble: str = 'horizontal', subset_flag: bool = True, per_series2=None, only_specified: bool = False)¶
Generate horizontal ensemble templates given a table of results.
- autots.models.ensemble.MosaicEnsemble(ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, df_train=None, prematched_series: dict | None = None)¶
Generate forecast for mosaic ensembling.
- Parameters:
prematched_series (dict) – from outer horizontal generalization, possibly different than params
- autots.models.ensemble.create_unpredictability_score(full_mae_errors, full_mae_vals, total_vals, df_wide, validation_test_indexes, scale=False)¶
- autots.models.ensemble.find_pattern(strings, x, sep='-')¶
- autots.models.ensemble.generalize_horizontal(df_train, known_matches: dict, available_models: list, full_models: list | None = None)¶
generalize a horizontal model trained on a subset of all series
- Parameters:
df_train (pd.DataFrame) – time series data
known_matches (dict) – series:model dictionary for some to all series
available_models (dict) – list of models actually available
full_models (dict) – models that are available for every single series
- autots.models.ensemble.generate_crosshair_score(error_matrix, method=None)¶
- autots.models.ensemble.generate_crosshair_score_list(error_list)¶
- autots.models.ensemble.generate_mosaic_template(initial_results, full_mae_ids, num_validations, col_names, full_mae_errors, smoothing_window=None, metric_name='MAE', models_to_use=None, id_to_group_mapping: dict | None = None, filtered: bool = False, unpredictability_adjusted: bool = False, validation_test_indexes=None, full_mae_vals=None, df_wide=None, **kwargs)¶
Generate an ensemble template from results.
- autots.models.ensemble.horizontal_classifier(df_train, known: dict, method: str = 'whatever', classifier_params=None)¶
CLassify unknown series with the appropriate model for horizontal ensembling.
- Parameters:
df_train (pandas.DataFrame) – historical data about the series. Columns = series_ids.
known (dict) – dict of series_id: classifier outcome including some but not all series in df_train.
- Returns:
dict.
- autots.models.ensemble.horizontal_xy(df_train, known)¶
Construct X, Y, X_predict features for generalization.
- autots.models.ensemble.is_horizontal(ensemble_list)¶
- autots.models.ensemble.is_mosaic(ensemble_list)¶
- autots.models.ensemble.mlens_helper(models, models_source='bestn')¶
- autots.models.ensemble.mosaic_classifier(df_train, known, classifier_params=None)¶
CLassify unknown series with the appropriate model for mosaic ensembles.
- autots.models.ensemble.mosaic_or_horizontal(all_series: dict)¶
Take a mosaic or horizontal model and return series or models.
- Parameters:
all_series (dict) – dict of series: model (or list of models)
- autots.models.ensemble.mosaic_to_horizontal(ModelParameters, forecast_period: int = 0)¶
Take a mosaic template and pull a single forecast step as a horizontal model.
- Parameters:
ModelParameters (dict) – the json.loads() of the ModelParameters of a mosaic ensemble template
forecast_period (int) – when to choose the model, starting with 0 where 0 would be the first forecast datestamp, 1 would be the second, and so on must be less than forecast_length that the model was trained on.
- Returs:
ModelParameters (dict)
- autots.models.ensemble.mosaic_xy(df_train, known)¶
- autots.models.ensemble.n_limited_horz(per_series, K, safety_model=False)¶
- autots.models.ensemble.parse_forecast_length(forecast_length)¶
- autots.models.ensemble.parse_horizontal(all_series: dict, model_id: str | None = None, series_id: str | None = None)¶
Take a mosaic or horizontal model and return series or models.
- Parameters:
all_series (dict) – dict of series: model (or list of models)
model_id (str) – name of model to find series for
series_id (str) – name of series to find models for
- Returns:
list
- autots.models.ensemble.parse_mosaic(ensemble)¶
- autots.models.ensemble.process_mosaic_arrays(local_results, full_mae_ids, full_mae_errors, total_vals=None, models_to_use=None, smoothing_window=None, filtered=False, unpredictability_adjusted=False, validation_test_indexes=None, full_mae_vals=None, df_wide=None)¶
autots.models.gluonts module¶
GluonTS
Best neuralnet models currently available, released by Amazon, scale well. Except it is really the only thing I use that runs mxnet, and it takes a while to train these guys… And MXNet is now sorta-maybe-deprecated? Which is sad because it had excellent CPU-based training speed.
Note that there are routinely package version issues with this and its dependencies. Stability is not the strong suit of GluonTS.
- class autots.models.gluonts.GluonTS(name: str = 'GluonTS', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, gluon_model: str = 'DeepAR', epochs: int = 20, learning_rate: float = 0.001, context_length=10, forecast_length: int = 14, **kwargs)¶
Bases:
ModelObject
GluonTS based on mxnet.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – Not yet implemented
gluon_model (str) – Model Structure to Use - [‘DeepAR’, ‘NPTS’, ‘DeepState’, ‘WaveNet’,’DeepFactor’, ‘Transformer’,’SFF’, ‘MQCNN’, ‘DeepVAR’, ‘GPVAR’, ‘NBEATS’]
epochs (int) – Number of neural network training epochs. Higher generally results in better, then over fit.
learning_rate (float) – Neural net training parameter
context_length (str) – int window, ‘2ForecastLength’, or ‘nForecastLength’
forecast_length (int) – Length to forecast. Unlike in other methods, this must be provided before fitting model
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=[], just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
autots.models.greykite module¶
Greykite.
- class autots.models.greykite.Greykite(name: str = 'Greykite', frequency: str = 'infer', prediction_interval: float = 0.9, holiday: bool = False, growth: str | None = None, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None)¶
Bases:
ModelObject
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holidays
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=[])¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=[], just_point_forecast: bool = False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.greykite.seek_the_oracle(df_index, series, col, forecast_length, freq, prediction_interval=0.9, model_template='silverkite', growth=None, holiday=True, holiday_country='UnitedStates', regressors=None, verbose=0, inner_n_jobs=1, **kwargs)¶
Internal. For loop or parallel version of Greykite.
autots.models.matrix_var module¶
VAR models based on matrix factorization and related methods.
Heavily borrowing on the work of Xinyu Chen See https://github.com/xinychen/transdim and corresponding Medium articles
Thrown around a lot of np.nan_to_num before pinv to prevent the following crash: On entry to DLASCL parameter number 4 had an illegal value
- class autots.models.matrix_var.DMD(name: str = 'DMD', frequency: str = 'infer', prediction_interval: float = 0.9, alpha: float = 0.0, rank: float = 0.1, amplitude_threshold: float | None = None, eigenvalue_threshold: float | None = None, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Dynamic Mode Decomposition
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.matrix_var.LATC(name: str = 'LATC', frequency: str = 'infer', prediction_interval: float = 0.9, time_horizon: float = 1, seasonality: int = 7, time_lags: list = [1], lambda0: float = 1, learning_rate: float = 1, theta: float = 1, window: int = 30, epsilon: float = 0.0001, alpha: list = [0.33333333, 0.33333333, 0.33333333], maxiter: int = 100, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Low Rank Autoregressive Tensor Completion. Based on https://arxiv.org/abs/2104.14936 and https://github.com/xinychen/tensor-learning/blob/master/mats/LATC-predictor.ipynb rho: learning rate lambda: weight parameter
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.matrix_var.MAR(name: str = 'MAR', frequency: str = 'infer', prediction_interval: float = 0.9, seasonality: float = 7, family: str = 'gaussian', maxiter: int = 200, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Matrix Autoregressive model based on the code of Xinyu Chen.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.matrix_var.RRVAR(name: str = 'RRVAR', frequency: str = 'infer', prediction_interval: float = 0.9, method: str = 'als', rank: float = 0.1, maxiter: int = 200, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Reduced Rank VAR models based on the code of Xinyu Chen.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.matrix_var.TMF(name: str = 'TMF', frequency: str = 'infer', prediction_interval: float = 0.9, d: int = 1, lambda0: float = 1, rho: float = 1, rank: float = 0.4, maxiter: int = 100, inner_maxiter: int = 10, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Temporal Matrix Factorization VAR model based on the code of Xinyu Chen.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.matrix_var.conj_grad_w(sparse_mat, ind, W, X, rho, maxiter=5)¶
- autots.models.matrix_var.conj_grad_x(sparse_mat, ind, W, X, A, Psi, d, lambda0, rho, maxiter=5)¶
- autots.models.matrix_var.dmd(data, r)¶
Dynamic Mode Decomposition (DMD) algorithm.
- autots.models.matrix_var.dmd4cast(data, r, pred_step)¶
- autots.models.matrix_var.dmd_forecast(data, r, pred_step, alpha=0.0, amplitude_threshold=None, eigenvalue_threshold=None)¶
- autots.models.matrix_var.ell_w(ind, W, X, rho)¶
- autots.models.matrix_var.ell_x(ind, W, X, A, Psi, d, lambda0, rho)¶
- autots.models.matrix_var.generate_Psi(T, d)¶
- autots.models.matrix_var.latc_imputer(sparse_tensor, time_lags, alpha, rho0, lambda0, theta, epsilon, maxiter)¶
Low-Rank Autoregressive Tensor Completion, LATC-imputer. Recognizes 0 as NaN.
- autots.models.matrix_var.latc_predictor(sparse_mat, pred_time_steps, time_horizon, time_intervals, time_lags, alpha, rho, lambda0, theta, window, epsilon, maxiter)¶
LATC-predictor kernel.
- autots.models.matrix_var.mar(X, pred_step, family='gaussian', maxiter=100)¶
- autots.models.matrix_var.mat2ten(mat, dim, mode)¶
- autots.models.matrix_var.rrvar(data, R, pred_step, maxiter=100)¶
Reduced-rank VAR algorithm using ALS.
- autots.models.matrix_var.svt_tnn(mat, tau, theta)¶
- autots.models.matrix_var.ten2mat(tensor, mode)¶
- autots.models.matrix_var.tmf(sparse_mat, rank, d, lambda0, rho, maxiter=50, inner_maxiter=10)¶
- autots.models.matrix_var.update_cg(var, r, q, Aq, rold)¶
- autots.models.matrix_var.var(X, pred_step)¶
Simple VAR.
- autots.models.matrix_var.var4cast(X, A, d, delta)¶
autots.models.mlensemble module¶
Created on Sun Jan 15 19:28:57 2023
@author: Colin
- class autots.models.mlensemble.MLEnsemble(name: str = 'MLEnsemble', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, forecast_length: int = 10, regression_type: str | None = None, regression_model=None, models=[{'Model': 'Cassandra', 'ModelParameters': {}, 'TransformationParameters': {}}, {'Model': 'MetricMotif', 'ModelParameters': {}, 'TransformationParameters': {}}, {'Model': 'SeasonalityMotif', 'ModelParameters': {}, 'TransformationParameters': {}}], num_validations=2, validation_method='backwards', min_allowed_train_percent=0.5, datepart_method='expanded_binarized', models_source: str = 'random', **kwargs)¶
Bases:
ModelObject
Combine models using an ML model across validations.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
regressor (numpy.Array) – additional regressor
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.mlensemble.create_feature(df_train, models, forecast_length, future_regressor_train=None, future_regressor_forecast=None, datepart_method=None)¶
autots.models.model_list module¶
Lists of models grouped by aspects.
- autots.models.model_list.auto_model_list(n_jobs, n_series, frequency)¶
- autots.models.model_list.model_list_to_dict(model_list)¶
Convert various possibilities to dict.
autots.models.neural_forecast module¶
Nixtla’s NeuralForecast. Be warned, as of writing, their package has commercial restrictions.
- class autots.models.neural_forecast.NeuralForecast(name: str = 'NeuralForecast', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2023, verbose: int = 0, forecast_length: int = 28, regression_type: str | None = None, n_jobs: int = 1, model='LSTM', loss='MQLoss', input_size='2ForecastLength', max_steps=100, learning_rate=0.001, early_stop_patience_steps=-1, activation='ReLU', scaler_type='robust', model_args={}, point_quantile=None, **kwargs)¶
Bases:
ModelObject
See NeuralForecast documentation for details.
temp[‘ModelParameters’].str.extract(‘model”: “([a-zA-Z]+)’)
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type – str = None,
model (str or object) – string aliases or passed to the models arg of NeuralForecast
model_args (dict) – for all model args that aren’t in default list, run get_new_params for default
- fit(df, future_regressor=None, static_regressor=None, regressor_per_series=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length=None, future_regressor=None, just_point_forecast=False, regressor_per_series=None)¶
autots.models.prophet module¶
Facebook’s Prophet
Since Prophet install can be finicky on Windows, it will be an optional dependency.
- class autots.models.prophet.FBProphet(name: str = 'FBProphet', frequency: str = 'infer', prediction_interval: float = 0.9, holiday: bool = False, regression_type: str | None = None, holiday_country: str = 'US', yearly_seasonality='auto', weekly_seasonality='auto', daily_seasonality='auto', growth: str = 'linear', n_changepoints: int = 25, changepoint_prior_scale: float = 0.05, seasonality_mode: str = 'additive', changepoint_range: float = 0.8, changepoint_spacing: int = 60, seasonality_prior_scale: float = 10.0, weekly_seasonality_prior_scale: float | None = None, yearly_seasonality_prior_scale: float | None = None, yearly_seasonality_order: int | None = None, holidays_prior_scale: float = 10.0, trend_phi: float = 1, random_seed: int = 2024, verbose: int = 0, n_jobs: int | None = None)¶
Bases:
ModelObject
Facebook’s Prophet
‘thou shall count to 3, no more, no less, 3 shall be the number thou shall count, and the number of the counting shall be 3. 4 thou shall not count, neither count thou 2, excepting that thou then preceed to 3.’ -Python
For params see: https://facebook.github.io/prophet/docs/diagnostics.html
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holidays
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast: bool = False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.prophet.NeuralProphet(name: str = 'NeuralProphet', frequency: str = 'infer', prediction_interval: float = 0.9, holiday: bool = False, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None, growth: str = 'off', n_changepoints: int = 10, changepoints_range: float = 0.9, trend_reg: float = 0, trend_reg_threshold: bool = False, ar_sparsity: float | None = None, yearly_seasonality: str = 'auto', weekly_seasonality: str = 'auto', daily_seasonality: str = 'auto', seasonality_mode: str = 'additive', seasonality_reg: float = 0, n_lags: int = 0, num_hidden_layers: int = 0, d_hidden: int | None = None, learning_rate: float | None = None, loss_func: str = 'Huber', train_speed: int | None = None, normalize: str = 'auto')¶
Bases:
ModelObject
Facebook’s Prophet got caught in a net.
n_jobs is implemented here but it should be set to 1. PyTorch already maxes out cores in all observed cases.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holidays
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast: bool = False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.prophet.get_changepoints(training_start_ds, training_end_ds, changepoint_spacing, changepoint_distance_end, custom_changepoints='')¶
Create the distinct uniform pattern used in Ecosystem Analytics This is likely to be replaced in the future. It was likely designed the way is was to have exact control over where the last potential changepoint could be, which is around the 93% mark of the data, and then setting a relatively course, uniform grid going way back in time. (sourced from the work of Benn O) :param training_start_ds: Pandas datetime or string date of earliest
historical training date
- Parameters:
training_end_ds – Pandas datetime or string date of last training date (used in model fitting)
changepoint_spacing (int) – Number of days between potential changepoints
changepoint_distance_end (int) – Number of days from the present into the past for which to start the uniform changepoint grid. This will also be the interval between potential changepoints
custom_changepoints (string) – comma separated dates in form YYYY-MM-DD. No additional quotations are necessary (e.g., “2020-10-12,2020-11-15”)
- Returns:
datetime64[ns]) of potential changepoints for Prophet
- Return type:
a pandas Series (dtype
autots.models.pytorch module¶
Created on Tue May 24 13:32:12 2022
@author: Colin
- class autots.models.pytorch.PytorchForecasting(name: str = 'PytorchForecasting', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, n_jobs: int = 1, forecast_length: int = 90, max_epochs: int = 100, batch_size: int = 128, max_encoder_length: int = 12, learning_rate: float = 0.03, hidden_size: int = 32, n_layers: int = 2, dropout: float = 0.1, datepart_method: str = 'simple', add_target_scales: bool = False, lags: dict = {}, target_normalizer: str = 'EncoderNormalizer', model: str = 'TemporalFusionTransformer', quantiles: list = [0.01, 0.1, 0.22, 0.36, 0.5, 0.64, 0.78, 0.9, 0.99], model_kwargs: dict = {}, trainer_kwargs: dict = {}, callbacks: list | None = None, **kwargs)¶
Bases:
ModelObject
pytorch-forecasting for the world’s over-obsession of neural nets.
This is generally going to require more data than most other models.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
model_kwargs (dict) – passed to pytorch-forecasting model on creation (for those not already defined above)
trainer_kwargs (dict) – passed to pt lightning Trainer
callbacks (list) – pt lightning callbacks
quantiles (list) – [0.1, 0.5, 0.9] or similar for quantileloss models
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed, wide style data
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead must be equal or lesser to that specified in init
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
autots.models.sklearn module¶
Sklearn dependent models
Decision Tree, Elastic Net, Random Forest, MLPRegressor, KNN, Adaboost
- class autots.models.sklearn.ComponentAnalysis(name: str = 'ComponentAnalysis', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_components: int = 10, forecast_length: int = 14, model: str = 'GLS', model_parameters: dict = {}, decomposition: str = 'PCA', n_jobs: int = -1)¶
Bases:
ModelObject
Forecasting on principle components.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
model (str) – An AutoTS model str
model_parameters (dict) – parameters to pass to AutoTS model
n_components (int) – int or ‘NthN’ number of components to use
decomposition (str) – decomposition method to use from scikit-learn
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast: bool = False)¶
Generate forecast data immediately following dates of .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.sklearn.DatepartRegression(name: str = 'DatepartRegression', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, forecast_length: int = 1, n_jobs: int | None = None, regression_model: dict = {'model': 'DecisionTree', 'model_params': {'max_depth': 5, 'min_samples_split': 2}}, datepart_method: str = 'expanded', polynomial_degree: int | None = None, holiday_countries_used: bool = False, lags: int | None = None, forward_lags: int | None = None, regression_type: str | None = None, **kwargs)¶
Bases:
ModelObject
Regression not on series but datetime
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None, static_regressor=None, regressor_per_series=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast: bool = False, df=None, regressor_per_series=None)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
future_regressor (pandas.DataFrame or Series) – Datetime Indexed
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.sklearn.MultivariateRegression(name: str = 'MultivariateRegression', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', verbose: int = 0, random_seed: int = 2020, forecast_length: int = 28, regression_model: dict = {'model': 'RandomForest', 'model_params': {}}, holiday: bool = False, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int = 7, min_rolling_periods: int = 7, ewm_var_alpha: float | None = None, quantile90_rolling_periods: int | None = None, quantile10_rolling_periods: int | None = None, ewm_alpha: float = 0.5, additional_lag_periods: int | None = None, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, nonzero_last_n: int | None = None, datepart_method: str | None = None, polynomial_degree: int | None = None, window: int = 5, probabilistic: bool = False, scale_full_X: bool = False, quantile_params: dict = {'learning_rate': 0.1, 'max_depth': 20, 'min_samples_leaf': 4, 'min_samples_split': 5, 'n_estimators': 250}, cointegration: str | None = None, cointegration_lag: int = 1, series_hash: bool = False, frac_slice: float | None = None, n_jobs: int = -1, **kwargs)¶
Bases:
ModelObject
Regression-framed approach to forecasting using sklearn. A multiariate version of rolling regression: ie each series is lagged independently but modeled together
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holiday flags
regression_type (str) – type of regression (None, ‘User’)
- base_scaler(df)¶
- fit(df, future_regressor=None, static_regressor=None, regressor_per_series=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
future_regressor (pandas.DataFrame or Series) – Datetime Indexed
- fit_data(df, future_regressor=None, static_regressor=None, regressor_per_series=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, just_point_forecast: bool = False, future_regressor=None, df=None, regressor_per_series=None)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead ignored here for this model, must be set in __init__ before .fit()
future_regressor (pd.DataFrame) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- scale_data(df)¶
- to_origin_space(df, trans_method='forecast', components=False, bounds=False)¶
Take transformed outputs back to original feature space.
- class autots.models.sklearn.PreprocessingRegression(name: str = 'PreprocessingRegression', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2023, verbose: int = 0, window_size: int = 10, regression_model: dict = {'model': 'RandomForest', 'model_params': {}}, transformation_dict=None, max_history: int | None = None, one_step: bool = False, processed_y: bool = False, normalize_window: bool = False, datepart_method: str = 'common_fourier', forecast_length: int = 28, regression_type: str | None = None, n_jobs: int = -1, **kwargs)¶
Bases:
ModelObject
Regression use the last n values as the basis of training data.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (#) – str = None,
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast: bool = False, df=None)¶
Generate forecast data immediately following dates of .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.sklearn.RandomFourierEncoding(n_components=100, sigma=1.0, random_state=None)¶
Bases:
object
- fit(X, y=None)¶
- transform(X)¶
- class autots.models.sklearn.RollingRegression(name: str = 'RollingRegression', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', verbose: int = 0, random_seed: int = 2020, regression_model: dict = {'model': 'ExtraTrees', 'model_params': {}}, holiday: bool = False, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int = 7, min_rolling_periods: int = 7, ewm_var_alpha: int | None = None, quantile90_rolling_periods: int | None = None, quantile10_rolling_periods: int | None = None, ewm_alpha: float = 0.5, additional_lag_periods: int = 7, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, nonzero_last_n: int | None = None, add_date_part: str | None = None, polynomial_degree: int | None = None, x_transform: str | None = None, window: int | None = None, n_jobs: int = -1, **kwargs)¶
Bases:
ModelObject
General regression-framed approach to forecasting using sklearn.
Who are you who are so wise in the ways of science? I am Arthur, King of the Britons. -Python
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holiday flags
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
future_regressor (pandas.DataFrame or Series) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast: bool = False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.sklearn.UnivariateRegression(name: str = 'UnivariateRegression', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', verbose: int = 0, random_seed: int = 2020, forecast_length: int = 7, regression_model: dict = {'model': 'ExtraTrees', 'model_params': {}}, holiday: bool = False, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int = 7, min_rolling_periods: int = 7, ewm_var_alpha: float | None = None, ewm_alpha: float = 0.5, additional_lag_periods: int = 7, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, add_date_part: str | None = None, polynomial_degree: int | None = None, x_transform: str | None = None, window: int | None = None, n_jobs: int = -1, **kwargs)¶
Bases:
ModelObject
Regression-framed approach to forecasting using sklearn. A univariate version of rolling regression: ie each series is modeled independently
“You’ve got to think for your selves!. You’re ALL individuals” “Yes! We’re all individuals!” - Python
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
holiday (bool) – If true, include holiday flags
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
future_regressor (pandas.DataFrame or Series) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, just_point_forecast: bool = False, future_regressor=None)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead ignored here for this model, must be set in __init__ before .fit()
future_regressor (pd.DataFrame) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.sklearn.VectorizedMultiOutputGPR(kernel='rbf', noise_var=10, gamma=0.1, lambda_prime=0.1, p=7)¶
Bases:
object
Gaussian Process Regressor.
- Parameters:
kernel (str) – linear, polynomial, rbf, periodic, locally_periodic, exponential
noise_var (float) – noise variance, effectively regularization. Close to zero little regularization, larger values create more model flexiblity and noise tolerance.
gamma – For the RBF, Exponential, and Locally Periodic kernels, γ is essentially an inverse length scale. [0.1,1,10,100].
lambda – For the Periodic and Locally Periodic kernels, lambda_ determines the smoothness of the periodic function. A reasonable range might be [0.1,1,10,100].
lambda_prime – Specifically for the Locally Periodic kernel, this determines the smoothness of the periodic component. Same range as lambda_.
p – The period parameter for the Periodic and Locally Periodic kernels such as 7 or 365.25 for daily data.
- fit(X, Y)¶
- predict(X)¶
- predict_proba(X)¶
- class autots.models.sklearn.WindowRegression(name: str = 'WindowRegression', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2022, verbose: int = 0, window_size: int = 10, regression_model: dict = {'model': 'RandomForest', 'model_params': {}}, input_dim: str = 'univariate', output_dim: str = 'forecast_length', normalize_window: bool = False, shuffle: bool = False, forecast_length: int = 1, max_windows: int = 5000, fourier_encoding_components: float | None = None, scale: bool = False, datepart_method: str | None = None, regression_type: str | None = None, n_jobs: int = -1, **kwargs)¶
Bases:
ModelObject
Regression use the last n values as the basis of training data.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (#) – str = None,
- fit(df, future_regressor=None, static_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- fit_data(df, future_regressor=None)¶
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int | None = None, future_regressor=None, just_point_forecast: bool = False, df=None)¶
Generate forecast data immediately following dates of .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.sklearn.generate_classifier_params(model_dict=None, method='default')¶
- autots.models.sklearn.generate_regressor_params(model_dict=None, method='default')¶
Generate new parameters for input to regressor.
- autots.models.sklearn.retrieve_classifier(regression_model: dict = {'model': 'RandomForest', 'model_params': {'bootstrap': False, 'min_samples_leaf': 1, 'n_estimators': 300}}, verbose: int = 0, verbose_bool: bool = False, random_seed: int = 2020, n_jobs: int = 1, multioutput: bool = True)¶
Convert a model param dict to model object for regression frameworks.
- autots.models.sklearn.retrieve_regressor(regression_model: dict = {'model': 'RandomForest', 'model_params': {'bootstrap': False, 'min_samples_leaf': 1, 'n_estimators': 300}}, verbose: int = 0, verbose_bool: bool = False, random_seed: int = 2020, n_jobs: int = 1, multioutput: bool = True)¶
Convert a model param dict to model object for regression frameworks.
- autots.models.sklearn.rolling_x_regressor(df, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int | None = None, min_rolling_periods: int | None = None, quantile90_rolling_periods: int | None = None, quantile10_rolling_periods: int | None = None, ewm_alpha: float = 0.5, ewm_var_alpha: float | None = None, additional_lag_periods: int = 7, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, nonzero_last_n: int | None = None, add_date_part: str | None = None, holiday: bool = False, holiday_country: str = 'US', polynomial_degree: int | None = None, window: int | None = None, cointegration: str | None = None, cointegration_lag: int = 1)¶
Generate more features from initial time series.
macd_periods ignored if mean_rolling is None.
Returns a dataframe of statistical features. Will need to be shifted by 1 or more to match Y for forecast. so for the index date of the output here, this represents the time of the prediction being made, NOT the target datetime. the datepart components should then represent the NEXT period ahead, which ARE the target datetime
- autots.models.sklearn.rolling_x_regressor_regressor(df, mean_rolling_periods: int = 30, macd_periods: int | None = None, std_rolling_periods: int = 7, max_rolling_periods: int | None = None, min_rolling_periods: int | None = None, quantile90_rolling_periods: int | None = None, quantile10_rolling_periods: int | None = None, ewm_alpha: float = 0.5, ewm_var_alpha: float | None = None, additional_lag_periods: int = 7, abs_energy: bool = False, rolling_autocorr_periods: int | None = None, nonzero_last_n: int | None = None, add_date_part: str | None = None, holiday: bool = False, holiday_country: str = 'US', polynomial_degree: int | None = None, window: int | None = None, future_regressor=None, regressor_per_series=None, static_regressor=None, cointegration: str | None = None, cointegration_lag: int = 1, series_id=None, slice_index=None, series_id_to_multiindex=None)¶
Adds in the future_regressor.
autots.models.statsmodels module¶
Statsmodels based forecasting models.
Statsmodels documentation can be a bit confusing. And it seems standard at first, but each model likes to do things differently. For example: exog, exog_oos, and exog_fc all sometimes mean the same thing
- class autots.models.statsmodels.ARDL(name: str = 'ARDL', frequency: str = 'infer', prediction_interval: float = 0.9, lags: int = 1, trend: str = 'c', order: int = 0, causal: bool = False, regression_type: str = 'holiday', holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
ARDL from Statsmodels.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
lags (int) – lags 1 to max
trend (str) – n/c/t/ct
order (int) – 0 to max
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.ARIMA(name: str = 'ARIMA', frequency: str = 'infer', prediction_interval: float = 0.9, p: int = 0, d: int = 1, q: int = 0, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
ARIMA from Statsmodels.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
p (int) – is the number of autoregressive steps,
d (int) – is the number of differences needed for stationarity
q (int) – is the number of lagged forecast errors in the prediction.
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
n_jobs (int) – passed to joblib for multiprocessing. Set to none for context manager.
- fit(df, future_regressor=None)¶
Train algorithm given data supplied .
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
large p,d,q can be very slow (a p of 30 can take hours)
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.DynamicFactor(name: str = 'DynamicFactor', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, k_factors: int = 1, factor_order: int = 0, **kwargs)¶
Bases:
ModelObject
DynamicFactor from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
- Either a PredictionObject of forecasts and metadata, or
if just_point_forecast == True, a dataframe of point forecasts
maModel = DynamicFactor(df_train, freq = ‘MS’, k_factors = 2, factor_order=2).fit() maPred = maModel.predict()
- class autots.models.statsmodels.DynamicFactorMQ(name: str = 'DynamicFactorMQ', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, factors: int = 1, factor_orders: int = 2, factor_multiplicities: int | None = None, idiosyncratic_ar1: bool = False, maxiter: int = 1000, **kwargs)¶
Bases:
ModelObject
DynamicFactorMQ from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.ETS(name: str = 'ETS', frequency: str = 'infer', prediction_interval: float = 0.9, damped_trend: bool = False, trend: str | None = None, seasonal: str | None = None, seasonal_periods: int | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Exponential Smoothing from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
damped_trend (bool) – passed through to statsmodel ETS (formerly just ‘damped’)
trend (str) – passed through to statsmodel ETS
seasonal (bool) – passed through to statsmodel ETS
seasonal_periods (int) – passed through to statsmodel ETS
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.GLM(name: str = 'GLM', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, regression_type: str | None = None, family='Gaussian', constant: bool = False, changepoint_spacing: int | None = None, verbose: int = 1, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Simple linear regression from statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.GLS(name: str = 'GLS', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, changepoint_spacing: int | None = None, changepoint_distance_end: int | None = None, constant: bool = False, **kwargs)¶
Bases:
ModelObject
Simple linear regression from statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Returns dict of new parameters for parameter tuning
- get_params()¶
Return dict of current parameters
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.Theta(name: str = 'Theta', frequency: str = 'infer', prediction_interval: float = 0.9, deseasonalize: bool = True, use_test: bool = True, difference: bool = False, period: int | None = None, theta: float = 2, use_mle: bool = False, method: str = 'auto', holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int | None = None, **kwargs)¶
Bases:
ModelObject
Theta Model from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
statsmodels (params from Theta Model as per) –
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.UnobservedComponents(name: str = 'UnobservedComponents', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, n_jobs: int = 1, level: str = 'smooth trend', trend: bool = False, cycle: bool = False, damped_cycle: bool = False, irregular: bool = False, autoregressive: int | None = None, stochastic_cycle: bool = False, stochastic_trend: bool = False, stochastic_level: bool = False, maxiter: int = 100, cov_type: str = 'opg', method: str = 'lbfgs', model_kwargs: dict | None = None, **kwargs)¶
Bases:
ModelObject
UnobservedComponents from Statsmodels.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
model_kwargs (dict) – additional model params to pass through underlying statsmodel
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast: bool = False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.VAR(name: str = 'VAR', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, maxlags: int = 15, ic: str = 'fpe', **kwargs)¶
Bases:
ModelObject
VAR from Statsmodels.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.VARMAX(name: str = 'VARMAX', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, order: tuple = (1, 0), trend: str = 'c', **kwargs)¶
Bases:
ModelObject
VARMAX from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generate forecast data immediately following dates of index supplied to .fit().
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.statsmodels.VECM(name: str = 'VECM', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, deterministic: str = 'n', k_ar_diff: int = 1, seasons: int = 0, coint_rank: int = 1, **kwargs)¶
Bases:
ModelObject
VECM from Statsmodels
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=None)¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=None, just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- autots.models.statsmodels.arima_seek_the_oracle(current_series, args, series)¶
- autots.models.statsmodels.glm_forecast_by_column(current_series, X, Xf, args)¶
Run one series of GLM and return prediction.
autots.models.tfp module¶
- class autots.models.tfp.TFPRegression(name: str = 'TFPRegression', frequency: str = 'infer', prediction_interval: float = 0.9, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 1, kernel_initializer: str = 'lecun_uniform', optimizer: str = 'adam', loss: str = 'negloglike', epochs: int = 50, batch_size: int = 32, dist: str = 'normal', regression_type: str | None = None)¶
Bases:
ModelObject
Tensorflow Probability regression.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’)
- fit(df, future_regressor=[])¶
Train algorithm given data supplied
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=[], just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
- class autots.models.tfp.TFPRegressor(kernel_initializer: str = 'lecun_uniform', optimizer: str = 'adam', loss: str = 'negloglike', epochs: int = 50, batch_size: int = 32, dist: str = 'normal', verbose: int = 1, random_seed: int = 2020)¶
Bases:
object
Wrapper for Tensorflow Keras based RNN.
- Parameters:
rnn_type (str) – Keras cell type ‘GRU’ or default ‘LSTM’
kernel_initializer (str) – passed to first keras LSTM or GRU layer
hidden_layer_sizes (tuple) – of len 1 or 3 passed to first keras LSTM or GRU layers
optimizer (str) – Passed to keras model.compile
loss (str) – Passed to keras model.compile
epochs (int) – Passed to keras model.fit
batch_size (int) – Passed to keras model.fit
verbose (int) – 0, 1 or 2. Passed to keras model.fit
random_seed (int) – passed to tf.random.set_seed()
- fit(X, Y)¶
Train the model on dataframes of X and Y.
- predict(X, conf_int: float | None = None)¶
Predict on dataframe of X.
- class autots.models.tfp.TensorflowSTS(name: str = 'TensorflowSTS', frequency: str = 'infer', prediction_interval: float = 0.9, regression_type: str | None = None, holiday_country: str = 'US', random_seed: int = 2020, verbose: int = 0, trend: str = 'local', seasonal_periods: int | None = None, ar_order: int | None = None, fit_method: str = 'hmc', num_steps: int = 200)¶
Bases:
ModelObject
STS from TensorflowProbability.
- Parameters:
name (str) – String to identify class
frequency (str) – String alias of datetime index frequency or else ‘infer’
prediction_interval (float) – Confidence interval for probabilistic forecast
regression_type (str) – type of regression (None, ‘User’, or ‘Holiday’)
- fit(df, future_regressor=[])¶
Train algorithm given data supplied.
- Parameters:
df (pandas.DataFrame) – Datetime Indexed
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length: int, future_regressor=[], just_point_forecast=False)¶
Generates forecast data immediately following dates of index supplied to .fit()
- Parameters:
forecast_length (int) – Number of periods of data to forecast ahead
regressor (numpy.Array) – additional regressor, not used
just_point_forecast (bool) – If True, return a pandas.DataFrame of just point forecasts
- Returns:
Either a PredictionObject of forecasts and metadata, or if just_point_forecast == True, a dataframe of point forecasts
autots.models.tide module¶
- class autots.models.tide.TiDE(name: str = 'UnivariateRegression', random_seed=42, frequency='D', learning_rate=0.0009999, transform=False, layer_norm=False, holiday=True, dropout_rate=0.3, batch_size=512, hidden_size=256, num_layers=1, hist_len=720, decoder_output_dim=16, final_decoder_hidden=64, num_split=4, min_num_epochs=0, train_epochs=100, patience=10, epoch_len=None, permute=True, normalize=True, gpu_index=0, n_jobs: int = 'auto', forecast_length: int = 14, prediction_interval: float = 0.9, verbose: int = 0)¶
Bases:
ModelObject
Google Research MLP based forecasting approach.
- fit(df=None, num_cov_cols=None, cat_cov_cols=None, future_regressor=None)¶
Training TS code.
- get_new_params(method: str = 'random')¶
Return dict of new parameters for parameter tuning.
- get_params()¶
Return dict of current parameters.
- predict(forecast_length='self', future_regressor=None, mode='test', just_point_forecast=False)¶
- class autots.models.tide.TimeCovariates(datetimes, normalized=True, holiday=False)¶
Bases:
object
Extract all time covariates except for holidays.
- get_covariates()¶
Get all time covariates.
- class autots.models.tide.TimeSeriesdata(df, num_cov_cols, cat_cov_cols, ts_cols, train_range, val_range, test_range, hist_len, pred_len, batch_size, freq='D', normalize=True, epoch_len=None, holiday=False, permute=True)¶
Bases:
object
Data loader class.
- test_val_gen(mode='val')¶
Generator for validation/test data.
- tf_dataset(mode='train')¶
Tensorflow Dataset.
- train_gen()¶
Generator for training data.
- autots.models.tide.get_HOLIDAYS()¶
- autots.models.tide.mae_loss(y_pred, y_true)¶
- autots.models.tide.mape(y_pred, y_true)¶
- autots.models.tide.nrmse(y_pred, y_true)¶
- autots.models.tide.rmse(y_pred, y_true)¶
- autots.models.tide.smape(y_pred, y_true)¶
- autots.models.tide.wape(y_pred, y_true)¶
Module contents¶
Model Models